DERMAL EXPOSURE MODELING

Tom Armstrong, CIH, PhD

With thanks to: Rosalie Tibaldi, Daniel Drolet, Wil Ten Berge and Jennifer Sahmel

PRINCIPLES TO COVER (BRIEFLY)

- Dermal deposition, liquids and solid particulates, for pure substances and mixtures
- General dermal exposure models
 - Deposition
 - Absorption
- Dermal permeation theory
- Octanol-water partitioning, its importance and methods of estimation
- Important tools and data sources

PRINCIPLES TO COVER --- IN MORE DETAIL

- IH SkinPerm development, theory and use
 - Neat compounds
 - Aqueous mixtures
 - Air to dermal absorption

ESTIMATES OF DEPOSITION MODELS – HOW MUCH GETS ONTO SKIN

- **RISKOFDERM:** The RISKOFDERM model was developed for estimating potential dermal exposure, i.e., the total amount of a substance coming into contact with the protective clothing, work clothing and exposed skin ... it does not estimate absorption. The model originally consists of a set of equations, which have been entered into a user friendly MS Excel[®] spreadsheet. This model is used to estimate potential dermal exposure to a product or substance used for, or handled in a separate process or task within a workday.
- "... not targeted at experts in occupational hygiene, physicians, toxicologists or enterprises with the capability to carry out more detailed dermal risk assessments. However, these experts may find the toolkit useful as an initial rough estimate of dermal hazard, dermal exposure and dermal health risk before starting in-depth investigations."

RiskofDerm was build with occupational task scenarios, but can be easily extrapolated to consumer task exposures in similar categories

To find the link to download the tool from TNO, just Google search RiskofDerm

THE OLD UK HSE MODEL EASE INCLUDED ESTIMATES OF DEPOSITION

- EASE an expert system that used rules on a scenario description to search an evaluated exposures database
- For described scenario and substance properties, it delivered an estimated load in mg/cm² for the affected skin area
- It did not predict absorbed dose or evaporated fraction
- The principles of this seem to have been expanded and updated in RiskofDerm

ESTIMATING DEPOSITION VIA FIELD STUDIES

HOW CAN CONTACT LEADING TO DERMAL DEPOSITION OCCUR?

- direct contact with the chemical, or matrix containing the chemical
- contact with contaminated surfaces (e.g. tools, tables, walls, clothing, even other persons)
- contact with an aerosol after deposition

DETERMINANT CATEGORIES FOR DERMAL CONTACT

- substance and product characteristics
- task done by the user
- task process techniques and equipment
- exposure control measures
- o user characteristics and habits
- environmental conditions
- Source: Marguart 2003, Ann. Occ. Hyg. Vol. 47, No. 8, pp. 599–607. See the publication for more details on dermal exposure determinants

CALCULATING A DERMAL OEL EQUIVALENT

- In some cases, an existing airborne OEL can be used to evaluate semi-quantitative data for dermal exposures
- Inhalation rates: 11-19 m³ air inhaled/day (moderate activity EPA Exposure Factors Handbook); 10 m3/day is a typically assumed occupational value

OEL (mg/m³) x m³ air inhaled/work day = mg/day

However, for some substances the retained inhaled systemic dose < the total inhaled dose

- Since it is USUALLY based on TLVs, it does not account for sensitive subpopulations and long tem continuous exposures, but some organizations apply a series of safety factors to OELs
- Various sources of general population target doses may be useful for comparison to dermal doses such as RfDs

INTACT SKIN IS A COMPLEX STRUCTURE

Dermal permeation goes from surface deposition through the strateum corneum and viable epidermis to the vasculated layer where aqueous solubility drives systemic uptake

9

HERE IS A DESCRIPTION OF INTACT SKIN

• The strateum corneum is the outermost layer, of flattened dead ketatinized corneocytes in a lipid matrix

Corneocytes are polyhedral, anucleated cells without cytoplasmic organelles, interlocked with each other and organized as vertical columns of 10–30 cells and embedded within a highly hydrophobic lipid matrix to form the stratum corneum.

- This layer can absorb up to three times its weight in water
- The viable epidermis is the next layer down living cells in an aqueous matrix
- Keratinocytes in the viable epidermis will multiply through cell division and migrate toward the skin surface.
- From the viable epidermis, the permeating material is available for dissolution and uptake via the capillary bed
- The interstitial fluid is largely water, but with some blood lipids

HOW THICK IS THE EPIDERMIS?

- In humans it is thinnest on the eyelids at 0.05 mm (0.0020 in) and thickest on the palms and soles at 1.5 mm (0.059 in)
- This different thickness affects the lag time of permeation and the loading in the epidermis.
- This thickness also affects the time it takes for the loading in the skin to be absorbed

Some Examples of Dermal Exposure Models

- The models presented can be used only for systemic toxics – *they do not address sensitization or irritation or corrosio*
- Three basic "models" presented here:
 - Calculation of a dermal OEL equivalent
 - AIHA dermal exposure model (conservative, uses a 100% absorption value by default, but that is easily modified)
 - IH SkinPerm Tool Revised Robinson model (estimates skin absorption based on exposure concentration and chemical-specific skin permeation rate)

SkinPerm

AIHA'S EXPOSURE ASSESSMENT STRATEGIES COMMITTEE MODEL: DERMAL EXPOSURE MODEL

D = (S)(Q)(WF)(FQ)(ABS)

- $D = (S)(Q)(W \Gamma)(\Gamma Q)(ADS)$ D = potential dose (mg/day) S = surface area of contact (cm²) Q = amount retained on the skin (mg/cm²) WF = C = concentration of chemical (percent by weight) FQ = number of contact events per day ABS = absorption (default 100% absorption into skin; or empirically derived data may be appropriate)

Variations on this model are widely used

Ignacio and Bullock, eds. A Strategy for Assessing and Managing Occupational Exposures, 3rd ed. Fairfax, VA: AIHA Press, 2006. Appendix II: Dermal Exposure Assessments.

13

SKIN SURFACE AREAS

Taken from the U.S. EPA's Exposure Factors Handbook, 1997, Volume I, Chapter 6: Dermal, Table 6-4, Surface Area by Body Part for Adults, m², and 2009, Chapter 7: Dermal, Table 7-11, Surface Area of Adult Males (21 Years and Older) in Square Meters TWA8HR Occupational Hygiene Consulting, LLC

<u>Body Part</u>	<u>Mean (Men) 1997</u>	<u>Mean (Men) 2009</u>
Head	$1180~{ m cm}^2$	$1360~{ m cm}^2$
Arms	$2280~{ m cm}^2$	$2890~{ m cm}^2$
Forearms	$1140~\mathrm{cm}^2$	$1460~{ m cm}^2$
Hands	$840~{ m cm}^2$	$1070~{ m cm}^2$
Palms	$150 \mathrm{~cm}^2$	and the local division of the local division
Thumb	$\sim 24~{ m cm}^2$	Crista dependito Esponente Factoria Handbook

WHOLE BODY about 20,000 cm²

14

Amount of Chemical Retained on Skin

- The amount retained on skin, or Q values, have been experimentally estimated
- These are given as mass per surface area of skin (surface density) rather than mass per volume (concentration)
- The US EPA table of suggested Q values for common industrial tasks (*and similar consumer tasks*)- is available in the course handouts: routine or incidental contact in the range of 0.7 2.1 mg/cm²

(consider lower values for thin watery fluids, and higher values for thicker oily compositions)

- Values from updated EPA Exposure Factors Handbook (2009) for solids are in the range of 0.13 – 0.27 mg/cm² for adults
- These are for the whole matrix. A constituent would be proportionally less.

THICK VISCOUS FILMS ON SKIN HAVE SEVERAL ASPECTS TO CONSIDER

- The total quantity of the substance of concern may not be available if it remains in the film.
- There will be a concentration gradients, possibly at the skin-film and air-film interfaces.
- The kinetics of molecular diffusivity may limit the quantities delivered to the skin interface or to the air interface.

Is the thick layer wiped off or washed off before the applied dose can be absorbed?

EXAMPLE: AIHA MODEL DERMAL CALCULATION FOR METHANOL

- A person is filling an automobile windshield washer solvent reservoir. The solvent is water with 30% methanol by weight. Both hands may be slashed with the solvent.
- $D = S \ge Q \ge WF \ge FQ \ge ABS$
- $S = Surface area = 2 hands = 840 cm^2$
- $Q = Amount retained on skin = 1.4 mg/cm^2$
- WF = Concentration by weight = 30% or 0.30
- FQ = Number of contacts = 1
- ABS = 100% or 1.0 (default assumption)
- $D = 840 \text{ cm}^{2*}1.4 \text{mg/cm}^{2*}0.30*1*100\%$

D= 354 mg

PEL/REL = 260 mg/m³ x (10m³/day) = 2600 mg/day US EPA IRIS *CHRONIC* RfD 2 mg/kg/day for 50 Kg = 100 mg/day

What "errors" ... and in what direction ... might we identify in this estimate of D?

EXAMPLE: DERMAL CONTACT CALCULATION FOR BENZENE

- A home mechanic is replacing a fuel line filter on a lawn mower. Contact of one hand with gasoline containing 1% benzene by weight occurs.
- $D = S \ge Q \ge WF \ge FQ \ge ABS$
- S = Surface area = portion of hands = 300 cm²
- Q = Amount retained on skin = 1.4 mg/cm²
- WF = Concentration by weight = 1% or 0.01
- FQ = Number of contacts = 1
- ABS = 1% (derived empirically) WHY JUST 1%?
- $D = 300 \text{ cm}^2 \times 1.4 \text{ mg/cm}^2 \times 1 \times 0.01 \times 0.01 = 0.42 \text{ mg/day}$
- $PEL/REL = 1.6 \text{ mg/m}^3 \times 11 \text{ m}^3/day = 17.6 \text{ mg/day}$
- US EPA IRIS RfD 4 x 10-3 mg/Kg/Day for 70 KG = 0.28 mg/day

What "errors" ... and in what direction ... might we identify in this estimate of D?

LIMITATIONS OF ESTIMATES THAT USE A PERCENT ABSORPTION FACTOR

- The absorption rate in the real world is typically variable, not constant
- The absorption rate is linked closely to the mass loading of the contaminant on the skin, and absorption rate increases as the topical exposure mass increases
- Time is a key aspect of absorption (most absorption occurs within 24 hours) – time must be the same when comparing values
- EVAPORATION is not considered in a rigorous way just via the estimate of the ABS fraction

ESTIMATING SKIN ABSORPTION

Two important variables in dermal absorption estimation are:

- Mass of the contaminant on the skin and
- Kp, or permeability rate

If concentration is <u>constant</u>, Kp = cm/hr

Based on Fick's Law of Diffusion and flux:

 $Kp = Flux (mg/cm^2/hr) / Conc. (mg/cm^3)$

ESTIMATING KP VALUES

Some sources of Kp values:

SkinPerm tool computes estimated Kp values:

http://home.planet.nl/~wtberge/home.html

IH SkinPerm calculates estimated Kps too, using a few physical chemical properties and algorithms

EPA's Dermal Exposure Assessment: Principles and Applications (1992), Summary of Compound-Specific Kp values, pp. 5-65 to 5-98. <u>http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=12188</u>

Some are available in published literature.

SKIN ABSORPTION

A model that attempts to refine Potts & Guy* is the revised Robinson Equation (this model is in the IH SkinPerm Tool):

The terms K_{lip} , K_{pro} and K_{aq} have further mathematical components

The model requires the octanol-water partition coefficient (log $K_{o/w}$) and molecular weight

*Potts, R.O., and R.H. Guy: Predicting skin permeability. Pharm. Res. 9:663–669 (1992).

USE OF LOG KOW

- The logK_{ow} value provides an estimate of a chemical's relative oil (lipid) and water solubility, which can be a predictor of dermal absorption
- In general, a logK_{ow} value between 1 and 3 indicates significant dermal absorption potential
- SRC Website estimates LogKow values: <u>http://www.syrres.com/esc/kowdemo.htm</u>

The US EPA EPIWIN suite (that uses the SRC method) also gives methods to estimate LogKow values

Some Data Sources

- Syracuse Research Corporation website, LogKow values
- Syracuse Research Corporation website, Kp Values
- U.S. Environmental Protection Agency, Dermal Exposure Assessment: Principles and Applications, Summary of Compound-Specific Kp Values, 1992, pp. 5-65 to 5-98: http://www.epa.gov/nceawww1/pdfs/derexp.pdf
- U.S. Environmental Protection Agency: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm
- Note: The DermWin module in EPI Suite has LogKow and chemical physical properties for substances
- Merck Index of chemicals: <u>https://www.rsc.org/Merck-Index/</u>

Note: Limited access without access rights. This index contains information on chemicals including common and generic names, trademarks and associated companies, CAS Registry Numbers, chemical structures, molecular formulae, weights and percentage composition, physical and toxicity data, and caution and hazard information.

 O. U.K. Royal Society of Chemistry: http://www.rsc.org/ChemSpider/index.asp
 Note: The ChemSpider program reportedly has SOME
 LogKow Values at skin pH of 5.5

GETTING TO LOGKOW - SMILES FROM CHEMSPIDER

25

EPIWIN, EPIWEB

(measured) values are available.

JUTED STATES	File	Edit	Functions	Batch Mode	Sho w Structure	Output	Fugacity	STP	Help
EPI Suite - Welcome Screen									
PRIAL PROTECTION	PhysProp	Previous	Get User	Save User	Search	CAS		ear Input Fields	
	Draw						alculate	Output	
AOPWIN	·								in Immary
KOWWIN									
BIOWIN									
MPBPVP	Input Chem	Name:							
WSKOW	Name Lo	okup							
WATERNT	Henry LC:		3 atm-m /mole	Water Solubility:	· · ·	mg/L			
HENRYWIN	Melting Point:		Celsius	Vapor Pressure:	· · · ·	mm Hg			
KOAWIN	Boiling Point		Celsius	Log Kow:					
KOCWIN		River		-					
BCFBAF	Water Darit		Lake						
HYDROWIN	Water Depth	•		neters neters/sec					
BioHCwin	Wind Velocity								
DERMWIN	Current Velocity	r. 1	0.05 m	neters/sec					
ECOSAR									

chemicals for release potential and "bin" chemicals by priority for future work. Estimated values should not be used when experimental

KOWWIN TAB

KOWWIN v1.68	
File Edit Functio	ns BatchMode ShowStructure Zwitterions Help
Draw	Previous Get User Save User CAS Input ExpValAdj Calculate
Enter SMILES:	0CC1CCC[C]CC1
Enter NAME: NameLookup	
	THE STATES TOTOL

27

RESULTS ESTIMATED LOG KOW

Print Sa	ive Results	Copy Remove Window Help			^
		Log Kow(version 1.68 estimate): 2.5	5		
SMILES CHEM	00010	CC(C)CC1			
HEM HOL FOR HOL WT					
ТҮРЕ	NUM	LOGKOW FRAGMENT DESCRIPTION	L COEFF	+ VALUE	
Frag		-CH3 [aliphatic carbon]	0.5473	0.5473	
Frag Frag	5	-CH2- [aliphatic carbon] -CH [aliphatic carbon]	0 <u>.</u> 4911 0.3614	2.4555 0.7228	
Frag Const	1 	-OH [hydroxy, aliphatic attach] Equation Constant	-1.4086 	-1.4086 0.2290	
	++		Log Kow =	2.5460	
	-	These estimates are also av	vailable via	a the	_
	(ChemSpider web site.			

EXAMPLE OF SRC'S LOG K_{ow} Calculator: Hexane

KowWin(LogKow) Log P Calculation: SMILES : C(CCCC)C CHEM : Hexane MOL FOR: C6 H14 MOL WT : 86.18	Useful. Simplified molecular input line entry system
TYPE NUM LOGKOW v1.66 FRAGMEN	T DESCRIPTION COEFF VALUE
Frag 2 -CH3 [aliphatic carbon]	0.5473 1.0946
Frag 4 -CH2- [aliphatic carbon]	0.4911 1.9644
Cons t Equation Constant	0.2290
Experimental Database Structure Match:	Log Kow = 3.2880

Name: n-Hexane CAS Registry Number : 000110-54-3 Experimental Log Kow: 3.90 Experim. Reference : Hansch,C et al. (1995)

IDEALLY, KOW AT PH 5.5

From: Geochemical Journal, Vol. 46, pp. 517 to 520, 2012

Fig. 1. Chemical structure of: (a) fluorescein, neutral form (H_2Fl°) ; (b) eosin Y, deprotonated form.

Fig. 2. Values of log K_{ow} vs. pH for fluorescein (this study; Kasnavia et al., 1999) and eosin Y (this study). Data points represent average of 3 to 5 experiments, and error bars represent 1 standard deviation. Some error bars are smaller than the data symbol.

This pH effect is important for acids, bases. Skin pH = 5.5

30

RELATIONSHIP OF LOG KO/W TO KP

Permeability of Human Skin (In Vitro) to Alcohols (Aqueous Solutions)

Compound	Kp	Log Ko/	$^{\prime}\mathrm{W}$				
Methanol	0.0005	-0.77		TWA8HR			
Ethanol	0.0008	-0.31					
Propanol	0.0014	0.30	What	ccupat			
Butanol	0.0025	0.65	trends do	Occupational Hygiene			
Pentanol	0.0060	1.56	you see?	lygien			
Hexanol	0.0130	2.03		e Consu			
Kp tends to increase with increasing Log K _{0/w} (up to saturation)							

saturation)

Taken from: Dermal Exposure Assessment: Principles and Applications, U.S. EPA, 1992

IH SKIN PERM CAN ESTIMATE THE LOSS TO EVAPORATION, SKIN ABSORPTION AND SYSTEMIC DOSE

- Penetration is complex; models can assist in estimating the dose which may be systemically available
- For volatiles, the program estimates evaporation along with absorption
- It is important to understand the principles and limitations behind any model

TWA8HR Occupational Hygiene Consulting, LLC

32

IH SKINPERM: PART OF THE AIHA EASC TOOLBOX

Thoughts from Wil ten Berge, a primary developer of IH SkinPerm theory and QSARs:

- Published permeation coefficients of organic substances from aqueous solutions through human skin in vitro appeared to support a theoretical model {Note: SkinPerm} for simulation of permeation of organic substances through the skin. Modeling of skin permeation requires not only substance properties like the octanol/water partition coefficient and the molecular weight or the molar volume, but should also include <u>diffusion kinetics</u>. Diffusion kinetics may provide additional understanding for the rate of permeation of gases, of liquids and of solid substances dissolved in water. The model applies to non-ionized substances that do not irritate, do not removed linids from the skin and permeate faster than the substance is metabolized in 1.
- 2.
- 3.
- 4. lipids from the skin and permeate faster than the substance is metabolized in the epidermis.
- Model predictions are accurate within one order of magnitude. This is accurate 5. enough to get some feeling for the contribution of dermal absorption in 33 comparison to absorption by inhalation or ingestion.

IH SKINPERM: BASIS FOR THE THEORETICAL MODEL

IH Skinperm is based on 2 critical QSARs for:

- Human aqueous permeability coefficient of the stratum corneum, predicted from the log(Ko/w) and the molecular weight. This QSAR was derived from 182 measured and validated human aqueous skin permeation coefficients in vitro (ten Berge 2009, Vecchia and Bunge 2002a).
- Stratum corneum/water partition coefficient, predicted from the log(Kow). This QSAR was derived from 97 measured and validated human stratum corneum/water partition coefficients in vitro (ten Berge 2009 and Vecchia and Bunge 2002b).

Vecchia, B.E., Bunge, A.L., (2002a). Skin absorption databases and predictive equations. In: Guy, R.H., Hadgraft, J. (Eds.), Transdermal Drug Delivery. Publisher Marcel Dekker, pp. 57–141 (Chapter 3).

Vecchia BE, Bunge AL, (2002b). Partitioning of chemicals into skin: Results and Predictions. Chapter 4 in Transdermal Drug Delivery, edited by Guy RH, Hadgraft J, Publisher Marcel Dekker.

ten Berge WF. (2009). A simple dermal absorption model: Derivation and application. Chemosphere 75, 1440-1445

WHAT IS "UNDER THE HOOD" IN IH SKINPERM?

$${}^{10}log[Kp_{sk-water}] = {}^{10}log\left[\frac{1}{\frac{1}{Klip + Kpol} + \frac{1}{Kaq}}\right]\frac{cm}{hr}$$

$$Klip = 10^{[b1+b2*^{10}log(Kow)+b3*Mw]}$$

$$Kpol = \frac{b4}{M4^{b5}} \qquad Kaq = \frac{b6}{Mw^{b7}}$$

$$Klip = permeation \ coefficient \ lipid \ medium$$

$$Kpol = permeation \ coefficient \ corneocytes \ [proteins]$$

$$Kaq = permeation \ coefficient \ epidemis \ [aqueous \ medium]$$

$$Kow = \frac{octanol}{water} partition \ coefficient$$

Mw = molecular weight

*b*1, *b*2, *b*3, *b*4, *b*5, *b*6, *b*7 = *regression coefficients*

USES OF IH SKINPERM

- Neat liquids
 - Instantaneous deposition (e.g. one splash)
 - Deposition over time
 - Portions absorbed, evaporated, remaining in or on skin
- Aqueous mixtures
 - Instantaneous deposition (e.g. one splash)
 - Deposition over time
 - Portions absorbed, evaporated, remaining in or on skin
- Uptake via skin of vapor from air

It is not ready for use with non-aqueous mixtures – but this is a development goal

RUNNING IH SKINPERM INITIAL SCREEN

Uvriana Concultina II C

TW/ A QUID

2

moti

2

5_

DISCLAIMER SCREEN

IH SkinPerm

Disclaimer

In no event shall the authors: Wil ten Berge, Daniel Drolet, Rosalie Tibaldi or the American Industrial Hygiene Association (AIHA) be liable for any direct, indirect, special, incidental, or consequential damages of any kind, or any damages whatsoever, including without limitation loss of profit, loss of use, savings or revenue, or the claims of third parties, whether or not Wil ten Berge, Daniel Drolet, Rosalie Tibaldi or the AIHA has been advised of the possibility of such loss, however caused, and on any theory of liability, arising out of or in connection with the possession, use or performance of this free software.

Acknowledgements

Wil ten Berge created the original SkinPerm model. In collaboration with Wil ten Berge, Daniel Drolet and Rosalie Tibaldi as members of the AIHA Exposure Assessment Strategies Committee (EASC) and Dermal Project Team (DPT) worked to create an upgraded, more user-friendly Excel based model now called IH SkinPerm. The EASC and DPT value practical modeling tools to help estimate skin exposures in occupational settings. IH SkinPerm is formatted similarly to other EASC tools such as IHSTAT and IHMOD and enables multilingual capability. Additional collaborators deserving special mention include Thomas W. Armstrong, Jennifer Sahmel, and Michael Jayjock.

TWA8HR Occupational Hygiene Consulting, LLC

MAXIMUM SKIN ADHERENCE

The skin adherence field is greyed out and a default of -1 is indicated if the substance is a liquid at 25°C. Smart logic is built into IH SkinPerm; the program recognizes whether a substance is a solid or liquid at standard temperature (25°C) based on the physicochemical properties. For substances that are solids at 25°C a maximum adherence value up to 2 mg/cm² is allowed based on studies of soil-on-skin adherence. If the deposition rate results in an increase above the input figure (0.2-2 mg/cm²), it is assumed that the surplus disappears just by removal from the skin.

EVAPORATION RATE

Evaporation rate is calculated based on REACh technical guidance and uses the following equations and assumptions:

Evaporation rate(LF) =
$$\frac{\beta * M w * V p}{R * T * 10}$$
 eq. 8

$$\beta = \frac{0.0111 * V^{0.96} * D_g^{0.19}}{v^{0.15} * X^{0.04}} \qquad eq. 9$$

Mw Molecular weight

Vp Vapor pressure of the liquid at skin temperature in Pascal

- R Gas constant in J/Mol/°K
- T Skin temperature in[°]K (normal range 28-32[°]C) (assume 303[°]K)
- β Coefficient of mass transfer in the vapour phase in meter/hour
- V Velocity of air (at workplaces ranges 0.3 to 0.6 m/s) (assume or 0.3 m/s ie. 1080 meter/hour)
- *D_g* Diffusivity of the liquid in the gas phase (range 0.03 to 0.06 m2/hr) (assume 0.05 m2/hr)
- *v Kinematic viscosity of air (Literature value 0.054 m2/hour)*
- X Length of the area of evaporation in the direction of the air stream (assume 0.1 meter)

IH SKINPERM ESTIMATES THE MAXIMUM DERMAL ABSORPTION FOR 2000 CM² IN ONE HOUR (MG) (FROM LIQUID)

A surface area of 2000 cm² is the approximate skin surface area of the hands and forearms. If the dermally absorbed amount (mg) in one hour is greater than a tenth of the OEL inhalation dose equivalent (mg) then the substances meets the EU Skin Notation criteria

THIS IS THE IH SKINPERM REPORT PAGE

r

CHEMICAL PROPERTIES DATABASE TABLES THE SKINPERM TABLE AND USER DEFINED TABLE

SkinPerm database

Num	Substance	CAS	MW	Temp	Vapour Pressure Pa	Water Solubility mg/L	LogKow bij skin pH 5.5	Density mg/cm³	Measured Perm. Coeff. cm/hr
1	111-trichloroethane	71-55-6	133.4	25	13300	4400	2.49	1320	
2	12-Dichloroethane	107-06-2	98.96	25	10500	8600	1.48	1230	
3	13-dinitrobenzene	99-65-6	168	25	0.027	530	1.52	1575	
4	1-methylnaphthalene	90-12-0	142.2	25	8.9	25.8	3.87	1145	
5	24-dichlorophenoxy acetic acid	94-75-7	221	25	0.01	677	0.09	1420	
6	26ditertbutylphenol	128-39-2	206.4	25	0.35	0.4	5.43	910	
7	2-chloronitrobenzene	88-73-3	157.6	25	3.8	590	2.42	1368	
8	2-methylnaphthalene	91-57-6	142.2	25	7.3	24.6	3.86	1000	
9	2-nitrophenol	88-75-5	139.1	25	6.9	1300	1.9	1490	
10	3-xylene	108-38-3	106.17	25	1110	161	3.2	870	
11	4-hydroxy-benzonitril	767-00-0	119.2	25	0.24	10000	1.6	1000	
12	4tertbutylphenol	98-54-4	150.2	25	0.64	26	3.31	908	
13	Acetochlor	34256-82-1	269.77	25	0.0037	223	3.03	1136	
14	Acetone	67-64-1	58.1	25	24000	800000	-0.24	790	
15	Acrylamide	79-06-1	71.1	25	0.9	2155	-0.67	1130	
16	Ahtn(musk)	1506-02-1	258.41	25	0.0682	1.25	5.7	919	
17	Allylglycidylether	106-92-3	114.06	25	627	140000	0.45	962	
18	Aniline	62-53-3	93	25	40	34000	0.9	1022	
19	Anthracene	120-12-7	178.24	25	0.066	0.0434	4.45	1250	
20	Arildone	56219-57-9	368.9	25	0.0002	2	5.87	1078	
21	B-chloropreen	126-99-8	88.5	25	25000	256	1.73	958.3	
22	Benzene	71-43-2	78	25	12673	1780	2.13	878.6	
23	Benzo(a)pyrene	50-32-8	252	25	0.00000073	0.00162	6.13	1286	
24	Benzylalcohol	100-51-6	108.14	25	12.4	42900	1.1	1042	
25	Betamethason	378-44-9	392.47	25	1.3E-09	89	1.9	1240	
26	Biphenyl	92-52-4	154.21	25	1.19	6.94	3.98	992	
27	Butoxyethanol	111-76-2	118.2	25	117	900000	0.83	897	
28	Caffeine	58-08-2	194.2	25	2000	21600	-0.07	1230	
29	Caprolactam	105-60-2	113.2	25	0.3	820000	-0.19	1010	

USER database

C	D

Num	Substance	CAS	MW	Temp °C	Vapour Pressure Pa	Water Solubility mg/L	LogKow bij skin pH 5.5	Density mg/cm²	Measured Perm. Coeff. cm/hr
1	test twa	1111	18	30	15	8	1.7	1	
2	chloroform in water	67-66-3-1	118	35	5066	9300	1.97	1180	
3	NN-diethyltoluamide	134-62-3	191.28		0.267	420	2.18	984	

You CAN (with care!) UNPROTECT the sheet, add Rows to the USER database And copy, modify data from The SKINPERM database portion.

NEEDED: name, Temp, VP, Water solubility. LogKow, Density

IH SkinPerm Tool: Data for n-Hexane

Version 1,022

SKINPERM TOOL: RESULTS FOR N-HEXANE

IH SkinPerm

Report sheet

Max. derm. abs. 2.41E-03 mg/cm²/hour

SKINPERM TOOL: DATA FOR N-HEXANE IH SkinPerm Report sheet

TWA8HR Occupational Hygiene Consulting, LLC

RESULTS GRAPHS FOR N-HEXANE – DIFFERENT DURATIONS, ETC. WILL AUTOSCALE

48

IH SKINPERM TOOL: DATA FOR BENZYLALCOHOL

Substance selection	on			Choose				
	inPerm		Benzylalcohol					
Database	O User's	;	I	LogKow at skin pH 5.5 :	1,1			
3 Scenario parameters				add a new substance				
 Instantaneous deposition Deposition over time 				O Timing parameters				
Vapor to skin s	scenario			Start deposition	0 hr			
Instantaneous depos	ition dose	100 r	ng	Duration of deposition	2 hr			
Affected	skin area	300 c	:m²	End time observation	2 hr			
Aaximum skin adhere	nce solids	-1 mg/	[/] cm ²					
	sition rate	0,5 mg/c	:m²/hr	A Report parameters				
	centration	2790 m	ıg∕m³	Calculation intervals/hour	10000			
Thickness of sto	anant air	1 cr	n	Report intervals/hour	200			

RESULTS FOR BENZYL ALCOHOL

IH SkinPerm

Report sheet

IH SKINPERM TOOL: DATA FOR BENZYLALCOHOL

51

TWA8HR Occupational Hygiene Consulting, LLC

IH SKINPERM: VALIDATION STUDIES OF THE THEORETICAL MODEL

The model has published validation data against which it was tested. (e.g., 1. ten Berge 2009 2. Jongeneelen and ten Berge 2011,)

1. is for aqueous permeation coefficients (human skin *in vitro*)
2. is for the blood/air partition coefficient (human PBPK)
The model has been used and "validated" against chemical hazards in addition to those in the original validation set and beyond these two graphic analyses

IH SKINPERM PARAMETER GUIDANCE

• Thickness of stagnant air layer

- 3 cm if clothing involved
- 1 cm if bare skin involved
- Adherence of solids
 - Max 2 mg/cm²
- Range of liquid film loading 0.7 to 2.5 mg/cm²
- Range of Log Kow -3 to 6
- MW < 600

ADDING A COMPOUND TO THE DATABASE IN IH SKINPERM WE CAN ALSO USE THIS TO DEFINE CHARACTERISTICS OF AN AQUEOUS MIXTURE

	Values	Units	
CAS number			rwa8h
Molecular weight		g/mole	TWA8HR Occupational Hygiene Consulting, LLC
Temperature		°C	ational H
Vapour Pressure		Pa	lygiene
Water Solubility		mg/L	Optional Onsulti
LogKow at skin, pH 5.5			ng, LLC
Density		mg/cm ³	
Measured Perm. Coeff.		cm/hr	
·			54

CASE STUDY: DERMAL EXPOSURE TO A CHEMICAL IN WATER DURING SHOWERING

- 4-Methylcyclohexanemethanol in water at 100mg/liter = 0.1 gr/L = 0.1gr/Kg = 0.0001 wt%
- LogKow 2.546
- MW 128, CAS # 34885-03-5
- VP 0.133 Torr at 25 C at
- The Raoult's Law Partial VP = 5.8 E-9 at 0.0001wt%
- Water solubility estimated about 2 grams per liter
- Whole body skin exposure 20000 cm2
- Activity coefficient (UNIFAC estimate) shows major departure from ideality (Activity coeff. about 2000) so PVpa = 1.15E-5 Torr so we might expect very little lost to air. What actually happens?

A SPREADSHEET MAY BE USEFUL IN CALCULATING AND DOCUMENTING SOME OF THESE INPUT PARAMETERS

EXAMPLE

6d			nsity	1/0	T	v-:	N4 -1	Mala 5.	D)/-			Duma Da	Contact Mass Load	Skin Area	Total Mass n	Ū
Compound	MW	(g/	ml) gr/L	VP	Torr W	Veight%	ivioles	Mole Fr	PVp	Activity C PV	pa i orr	Pvpa Pa	mg/CM2	CM2	Compo	buna
MCHM		128	0.884	8	0.133	0.0001	7.8125E-07	4.33984E-08	5.77199E-09	2000	1.1544E-	05	0.0001	15 2	20000	3
Water		18	1			0.9999	18.0018002	0.999999957					1	.5 .5	20000	29997
							18.001801									

ΑCTIVITY

• Discussed in IH Mod webinar

UNIFAC Activity Coefficient Calculator											
Calcu	Calculate Clear Clipboa		rd Define	Database	About	Exit					
Sys	stem Condit	ions									
	Temperature	303	▼ 3°		C Activit						
	Component		Mole Fraction	y							
1	4methylcyclohe:	kane 💌	0.01								
2	water	-	0.99	1.0027	'E00						
3	<< empty >>	-									
4	<< empty >>	-									
5	5 << empty >> 💌										
6	<< empty >>	-									
	_	_	-	_	_	-					

ACTIVITY COEFFICIENT APPLIED TO RAOULT'S LAW PARTIAL VP

MCHM AS DILUTE AQUEOUS SOLUTION WITH PARTIAL VAPOR PRESSURE - RAOULT'S LAW

MCHM as Neat Liquid - same mass loading

WHICH ESTIMATE IS "RIGHT?"

- Who can say without experimental evidence?
- Even with experimental evidence, these are close enough that the experimental scatter would hide a difference
- Which is the more conservative?
- What "accuracy" is needed for the risk assessment decision?

VAPOR TO SKIN WHOLE BODY N-METHYLPYRROLIDONE

NMP AIR TO DERMAL RESULTS

US EPA "Point of Departure" 56 mg/kg-day for 70 Kg male = 3900 mg

HERE ARE A FEW THOUGHTS ABOUT NON-AQUEOUS SOLUTIONS

- Chemical activity likely has a role in the various "fates" of evaporation, penetration, retention in SC
- Competing processes evaporation and dermal penetration remain as with aqueous mixtures
- The applied dose, application site, degree of hydration can be important as with aqueous solutions
- For volatiles, airflow velocity across the deposition layer can impact the evaporation fraction – velocity changes the thickness of the boundary layer as with aqueous mixtures
- Differential concentration effects may occur is the vehicle more or less volatile than the compound of concern (CoC)
- Emulsion effect of enhanced absorption may in part be due to surfactants – enhanced penetration

WHAT SORTS OF STUFF DOES OUR SKIN ENCOUNTER? AS CONSUMERS, WOMEN ARGUABLY GET THE MOST.

SHAMPOO

AVERAGE NUMBER OF CHEMICALS: 15 MOST WORRYING: Sodium Lauryi Sulphate; Tetrasodium and Propylene Glycol. POSSIBLE SIDE-EFFECTS: Irritation; possible eye damage.

EYE SHADOW

CHEMICALS: 26 MOST WORRYING: Polythylene terephthalate. POSSIBLE SIDE-EFFECTS: Linked to cancer; infertility; hormonal disruptions and damage to the body's organs.

LIPSTICK

CHEMICALS: 33 MOST WORRYING: Polymenthyl methacrylate. POSSIBLE SIDE-EFFECTS: Allergies; links to cancer.

NAIL VARNISH

CHEMICALS: 31 MOST WORRYING: Phthalates. POSSIBLE SIDE-EFFECTS: Linked to fertility issues and problems in developing bables.

PERFUME

CHEMICALS: 250 MOST WORRYING: Benzaldehyde. POSSIBLE SIDE-EFFECTS: Irritation to mouth, throat and eyes: nausea; linked to kidney damage.

FAKE TAN

CHEMICALS: 22 MOST WORRYING: Ethylparaben, Methylaparaben, Progylparaben, PossiBLE SIDE-EFFECTS: Rashes; irritation; hormonal disruption.

Only slightly censored

HAIRSPRAY

AVERAGE NUMBER OF CHEMICALS: 11 MOST WORRVING: Octinoxate, Isophthalates. POSSIBLE SIDE-EFFECTS: Allergies: Irritation to eyes, nose and throat; hormone disruption, linked to changes in cell structure.

BLUSHER:

CHEMICALS: 16 MOST WORRYING: Ethylparaben, Propylparaben, POSSIBLE SIDE-EFFECTS: Rashes; irritation; hormonal disruptions.

FOUNDATION

CHEMICALS: 24 MOST WORRYING: Polymethyl methacrylate. POSSIBLE SIDE-EFFECTS: Allergies; disrupts immune system: links to cancer.

DEODORANT:

CHEMICALS: 15 MOST WORRYING: Isopropyl Myristate, 'Parfum'. POSSIBLE SIDE-EFFECTS: Irritation of skin, eyes and lungs; headaches: dizziness; respiratory problems.

BODY LOTION

CHEMICALS: 32 MOST WORRYING: Methylparaben, Propylparaben, Polyethylene Glycol, which is also found in oven cleaners. POSSIBLE SIDE-EFFECTS: Rashes; Irritation; hormonal disruption.

ed by www.ImageOptimizer.ne

WHAT ABOUT SENSITIZERS?

There has been work in computational toxicology and QSARS

- Warne, M. A., et al. "A QSAR investigation of dermal and respiratory chemical sensitizers based on computational chemistry properties." SAR and QSAR in Environmental Research 20.5-6 (2009): 429-451.
- Fedorowicz, Adam, et al. "Structure-activity models for contact sensitization." Chemical research in toxicology 18.6 (2005): 954-969.
- Miller, Matthew D., et al. "Quantum mechanical structureactivity relationship analyses for skin sensitization." Journal of chemical information and modeling 45.4 (2005): 924-929.
- Estrada, Ernesto, et al. "Computer-aided knowledge generation for understanding skin sensitization mechanisms: the TOPS-MODE approach." Chemical research in toxicology 16.10 (2003): 1226-1235.
- Kupczewska-Dobecka, Jakubowski, Czerczak, Environmental Toxicology and Pharmacology 30 (2010) 95–102

DERMAL EXPOSURE MODELING: SUMMARY

- Models can be a useful tool for IHs to estimate dermal exposures because of the complexities involved in dermal absorption and penetration
- Some practical tools are available to assist in conducting these calculations
- Modeling can be faster and easier than sampling, but may not be as "accurate" – appropriate model inputs are critical

BACK UP MATERIALS

UNDERLYING HYPOTHESES

- 1. The skin disposition of small topical doses of most materials follows nearly first-order kinetics and can be predicted from physico-chemical properties and environmental factors.
- 2. Ingredient interactions can affect the thermodynamic activity of fragrance components, thus having a significant impact on the rate of both the absorption and evaporation processes.

 $\frac{dA}{dt} = -(k_1 + k_2)A$

0

• In eq. 3.1, A is the amount of ingredient on the skin surface, k 1 is the evaporation rate constant, $J_{max} = const. \times S_{hp} \times MW^{-b}$

and k 2 is the absorption rate constant.

• The absorption rate is proportional to the product of maximum flux,

and the fractional saturation of the surface layer, A/A max . B approx = 2.7

 $k_2 A = const. \times (A / A_{max}) \times S_{lip} MW^{-b}$

 $k_2 = k_2^T \times MW_r^{-b}$

• In eq. 3.3, molecular weight has been expressed in dimensionless or "reduced" form, MW r = MW/100 Da, for computational convenience. The parameter, T k 2, is as yet undetermined. The superscript indicates that its value is a function of skin temperature, T (see Discussion). The value of T k 2 for a room temperature exposure (T $\approx 30^{\circ}$ C) will be determined later by calibration with experimental data. where the superscript on k_1^{ν} indicates this parameter is dependent on airflow over the skin. The

 $k_1 = k_1^{\nu} \times P_{\nu pr} / (K_{oct} S_w)_r$

where the superscript on k_1^{ν} indicates this parameter is dependent on airflow over the skin. The properties $P_{vpr} = P_{vp'}/1$ torr and $(K_{ocr}S_w)_r = (K_{ocr}S_w)/1000 \text{ gL}^{-1}$ are dimensionless values chosen again for computational convenience. Like k_2^{τ} , the value of k_1^{ν} must be determined from experiment. The functional dependence of k_1^{ν} on airflow will be discussed later.

The theory can now be completed. Integration of eq. 3.1 with initial dose A_0 yields

$$A(t) = A_0 \exp[-(k_1 + k_2)t]$$
(3.6)

the fractions of the dose evaporated and absorbed after a long time are, respectively,

Substituting the results from eqs. 3.3 and 3.5 into eqs. 3.7 and 3.8, and expressing the results as a

percentage, yields

$$\text{%evap} = 100 \times \frac{x_r}{k + x_r} \tag{3.9}$$

and

 $f_{evap} = \frac{k_1}{k_1 + k_2}$

$$f_{abs} = \frac{k_2}{k_1 + k_2}$$
 %abs = 100 - %evap (3.10)

In eq. 3.9, *k* is a parameter depending on *v* and *T*, but having the same value for all fragrance ingredients. Its value, equal to the ratio k_2^T / k_1^v , must be determined experimentally. The parameter *x_r* is the following dimensionless ratio of physicochemical properties of the PRM:

$$x_{r} = \frac{P_{vpr}MW_{r}^{2.7}}{(K_{oct}S_{w})_{r}}$$
(3.11)